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Abstract

This is a beta release and is meant to solidify the accuracy and useability of the software. Please
contact me with any bugs, suggestions or comments at spayseur@u.washington.edu. Please site if used
for academic purposes. This version contains the following improvements as compared to version 0.7: an
interface to SPlus timeSeries objects (see section SPlus supplement), a new realizedObject, new example
data, and multiple bug �xes.
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1 INTRODUCTION 3

1 Introduction

This library contains current realized variance, covariance and correlation estimators. Shephard and Barndor�-

Nielsen (2005) provide a thorough survey of this literature. The library also contains multiple plotting

functions to help study the problem of realized calculations, as well as, the di�erences between estimators.

While there has been many advances in solving the problem of realized estimation it is apparent that the

best estimate depends on each di�erent data set, duration, and asset class. This library will not only cal-

culate estimates of realized quantities but also help the practitioner verify that the estimation method they

are using gives a reliable estimate. The library does not include any optimal sampling frequency, optimal

subgrid, or optimal lag length calculations, however, this is planned for version 1.0.

1.1 Data

The focus of this library is the calculation and exploration of realized variance, covariance and correlation

estimates. I have attempted to make the package data agnostic and leave it up to the user to clean and

align the data. S+Finmetrics 3.0 and Yan and Zivot (2003) have S+ utility functions that will help in this

e�ort. After discussions with many academics and practitioners it appears that everyone has their own data

management practices and this library was written to handle very generic data types that can be created

from any data management strategy.

For those starting from scratch, I will brie�y discuss the data management strategy that I use for my

dissertation. High frequency data poses a memory issue that is not common in most time-series analysis.

For a ballpark �gure, say I have 10 years worth of data for 10 assets that trade at a similar frequency that

MSFT in 2004 does (roughly 15,000 trades per day). The amount of transactions for the whole period is

10*10*250*15,000 = 375,000,000. At some point loading this into memory becomes infeasible. However, all

of the realized variance, covariance and correlation calculations are computed over a particular time interval.

This time interval corresponds directly to the integration bounds for integrated variance1 (This time interval

is usually one trading day). This allows us to keep only one day of data in memory at a time.

I imported NYSE Trades and Quotes (TAQ) �les into a MySQL database with indices on trade date and

ticker. From there I used the RODBC library for R (Lapsley (2007)) or the importData command for S+ to

query for one day and one stock at a time. After aligning the log-returns to the highest possible frequency,

using the realizedObject function, the Realized library is used. For more information on setting up your

1Assuming that the log-price process follows an Ito process
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own data see Section 6 or the S+Supplement for S+ users with S+Finmetrics 3.0 or Yan and Zivot (2003)'s

script2.

There are 11 days of Microsoft (MSFT) and General Electric (GE) high frequency transactions included in

this package. This data comes from the TAQ. I have cleaned this data using S+Finmetrics 3.0 and used the

median transaction for transactions with the exact same time stamp. The dataset msft.real.tts is aligned to

tick-time sampling (TTS) and msft.real.cts is aligned to calendar-time sampling (CTS) using the previous

tick method (for further discussion on alignment of trades see Hansen and Lunde, 2006). It is important to

note that calculation of realized covariance and correlation must be performed on CTS data, except for the

Hayashi and Yoshida (2005) estimator.

The sample data is loaded with the following commands:

> library(realized)

> data(msft.real.cts)

> data(msft.real.tts)

> data(ge.real.cts)

Each of msft.real.cts, msft.real.cts, and msft.real.cts objects is a list of objects representing a particular

market day of data from 5/1/1997 to 5/15/1997. These objects are of type 'realizedObject', Section 6

contains examples of creating your own realizedObjects. The �rst 10 MSFT returns for 5/1/1997 CTS

aligned data are:

> msft.real.cts[[1]][1:10]

Realized Object: (length = 10 , cts= TRUE )

data milliseconds

0.000000000 34201000

0.000000000 34202000

0.001024066 34203000

0.000000000 34204000

0.000000000 34205000

0.000000000 34206000

-0.001024066 34207000

0.000000000 34208000

0.000000000 34209000

0.000000000 34210000

The rCumSum function plots the cumulative returns for a particular alignment of the data. The �rst six days

of MSFT TTS data at the highest frequency of every tick is plotted in Figure 1.

# Figure 1: Multiple days of MSFT cumulative returns.

> par(mfrow=c(2,3))

> tmp <- sapply(1:6, function(x, rets){plot(rCumSum(rets[[x]]), ylab="Cumulative Return", xlab="")}, rets=msft.real.tts)

The dates for the example data are included for ease of use and are:

> data(dates.example)

> dates.example

2Available at http://faculty.washington.edu/ezivot/
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Figure 1: MSFT cumulative returns aligned at highest frequency in tick time.

[1] "5/1/1997" "5/2/1997" "5/5/1997" "5/6/1997" "5/7/1997" "5/8/1997"

[7] "5/9/1997" "5/12/1997" "5/13/1997" "5/14/1997" "5/15/1997"

2 Realized Variance

This section discusses the theory behind realized variance, problems with realized variance estimators and

introduces the realized variance functionality of the this package. This functionality includes the traditional

realized variance estimator (Andersen et al., 2001; Barndor�-Nielson and Sheppard, 2002), kernel based

estimators (Zhou, 1996; Hansen and Lunde, 2006, 2004; Barndor�-Nielsen et al., 2004), sub-sample based

estimators (Zhang et al., 2005), and signature plots (Fang, 1996; Andersen et al., 2000; Payseur, 2007).

Under certain assumptions, realized variance is an unbiased estimate of conditional variance. An overview

of the theory follows. For each day consider the observed price process to be:

Pti,m = P ∗
ti,mU ti,m i = 1, 2, ..., (m + 1) (1)

where ti represents the ith index the m + 1 observation price series, which can be TTS or CTS with a 1
m

sampling frequency. P ∗
ti,m is the e�cient price and Uti,m is microstructure noise. A log-return transformation
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yields3:

pti,m − pti−1,m︸ ︷︷ ︸
yi,m

≡
p∗ti,m − p∗ti−1,m︸ ︷︷ ︸

y∗i,m

+
uti,m − uti−1,m︸ ︷︷ ︸

ei,m

i = 1, 2, ...,m (2)

Where p∗ ≡ ln(P ∗), p ≡ ln(P ), and u ≡ ln(U). Assume that the e�cient log price process, p∗, is a continuous

local martingale:

dp∗ = σ(t)dw(t) (3)

where dw(t) is a standard Brownian motion and σ(t) is the independent cadlag spot volatility process. The

quadratic variation over the sub-interval Ti,m to Ti−1,m (Ti,m − Ti−1,m is usually one day) is de�ned by:

QVi,m = E(y∗2i,m) 1, 2, ...,m (4)

The realized variance of the e�cient price process

RV
(m)
∗ =

m∑
i=1

y∗2i,m (5)

converges to quadratic variation as m →∞ . (This quantity converges to integrated variance if the log-price

process is Ito.)

However, y∗i,m is latent and the observable realized variance based on yi,m

RV (m) =
m∑

i=1

y2
i,m (6)

is biased as m →∞ due to the micro structure noise, ei,m. The bias can be shown with a simple expansion:

RV (m) =
m∑

i=1

y2
i,m =

m∑
i=1

y∗2i,m︸ ︷︷ ︸
RV

(m)
∗

+

m∑
i=1

e2
i,m︸ ︷︷ ︸

RV
(m)
u

+
2 ·

m∑
i=1

y∗i,mei,m︸ ︷︷ ︸
2RC

(m)
∗,u

(7)

3All of the functions from the Realized package assume that your log return vector is in the form yi,m with m at as high a
frequency as possible.



2 REALIZED VARIANCE 7

The bias is composed of two components. The realized variance of the noise process, RV
(m)
u , and the realized

covariance between the e�cient price and noise processes, RC
(m)
∗,u . This bias is typically positive as m →∞

(always positive assuming that the noise and e�cient price processes are uncorrelated) due to a negative

auto correlation in the noise process known as bid-ask-bounce.

2.1 Signature Plots

The upward bias in the traditional realized variance estimator at high sampling frequencies can be seen

graphically in a volatility signature plot (Andersen et al., 2000 and Fang, 1996). This tool displays the

sample average realized variance across n days (often for one year or month), RV
(m)

= 1
n

∑n
t=1 RV

(m)
t , as a

function of di�erent sampling frequencies, 1
m .

The function rSignature is used to create an average signature plot. As mentioned above this package takes

a hands o� approach to data management. For this reason the when the rSignature is used for multiple days

the �iteration function� and iterations arguments must be speci�ed4. The iteration function must return an

object of type realizedObject the interval Ti,m−Ti−1,m (usually each trading day). The other parameters

in the rSignature function will be discussed in the next section. Since the example data is a simple list of

realizedObjects the iteration function simply returns the next element of the list:

> par(mfrow=c(1,1))

> simpleIteration <- function(x, i,args){x[[i]]}

A six day variance signature plot for MSFT 5/1/1997 to 5/8/1997 is displayed in Figure 2.

# Figure 2

> plot(rSignature((1:120)*10+1, msft.real.cts, xscale=1/60, iteration.funct="simpleIteration",

iterations=1:6), ylab="Realized Variance", xlab="Sampling Frequency (Minutes)", main="MSFT",

sub=paste(dates.example[[1]], dates.example[[11]], sep=" - "))

2.1.1 One Day Signature Plots

Averaging across many days can obfuscate the volatile behavior realized variance estimates at low frequencies.

This range is where the estimator is believed to be unbiased. In the realized variance and covariance literature

there is often a discussion of whether to sample at 5, 10, 15 or 20 minutes. To make this determination

practitioners often use the frequency where the bias ends on the signature plot (e.g. somewhere around a 3

minute sampling frequency in Figure 2) . However, there can be extremely large variability between estimates

even after the sampling frequency is low enough to correct the micro structure bias. Payseur (2007) uses

4In my own research the dataset is an open ODBC connection to my database, and the iteration function allows me to query
the next day.
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Figure 2: Six Day Average Signature Plot for MSFT 5/1/1997 to 5/8/1997

the one day signature plot to demonstrate how volatile estimates can be to small di�erences in the sampling

frequency.

The rSignature function takes the following inputs:

> args(rSignature)

function (range, x, y = NULL, type = "naive", cor = FALSE, args = list(),

xscale = 1, iteration.funct = "", iterations = NULL, plotit = FALSE, cts

= TRUE, makeReturns = FALSE)

• range is a numeric vector that speci�es a range of values as inputs to realized estimators.

• xis a realizedObject for the �rst asset

• yis a realizedObject for the second asset in the case of covariance or correlation

• typeis the type of estimator to use. If y=NULLthen then type must be the * string from the rv.*functions
and if y is not NULL it must be the * string from the rc.*functions.

• corif TRUE and y is not NULL a realized correlation signature is returned.

• xscale controls the scale of the x axis (for instance for returns sampled at every second, if we want the
xaxis to be in minutes then xscale=1/60)

A one day signature plot of MSFT for May 1, 1997, at a sampling frequency of each second from one second

to 20 minutes the command is:

> test.sig <- rSignature(1:1200, msft.real.cts[[1]], xscale=1/60)
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Figure 3A and 3B: One Day Signature Plots for MSFT, 5/1/1997

the object that is returned by the rSignature function has an x and a y component so that a simple call to

plot will plot the sampling frequency and realized variance on the horizontal and verical axis respectively.

> names(test.sig)

[1] "x" "y" "xgrid" "type" "cor" "cov" "cts"

Figure 3A shows this one day realized variance signature plot.

# Figure 3A

> plot(test.sig, ylab="Realized Variance", xlab="Sampling Frequency (Minutes)"

, main="MSFT", sub=dates.example[[1]])

These one day signature plots are used throughout this users manual to demonstrate the variability of each

estimator with respect to their inputs. In order to demonstrate the variability of the realized variance

estimator it is helpful to leave out the highest frequencies on the plot:

# Figure 3B

>plot(x=test.sig$x[-(1:20)], y=test.sig$y[-(1:20)], ylab="Realized Variance", xlab="Sampling Frequency (Minutes)",

main="MSFT", sub=dates.example[[1]])

The variability of the traditional realized variance estimator is easy to see on this one day plot. If a sampling

frequency of around 5 minutes is used then the estimate can lie anywhere between 0.0003 and 0.0006. This is

a signi�cant di�erence and should discourage simply choosing a sampling frequency for the realized variance

estimate. These graphs present only stylized facts about the variability of an estimate. An obvious tool

that is not implemented in this package is the use of standard errors with estimates of realized quantities.

The problem with these standard errors is that they are based on the fourth moments of the log-returns and

su�er from similar bias problems as the realized estimators themselves.
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Figure 4A and 4B: ACF for MSFT May 1, 1997 and Rectangular Kernel Estimator of Realized Variance as a Function of Lags.

2.2 Kernel Estimators

The realized variance signature plots in Figures 2, 3A and 3B demonstrate the micro structure noise bias in

realized variance estimates at high frequencies. These biases are created by a bid-ask-bounce induced negative

auto correlation in the micro structure noise. This can be observed directly from an auto-correlation plot of

the returns at the highest frequency:

> acf(msft.real.cts[[1]]$data, main="ACF: MSFT")

Hansen and Lunde (2006, 2004); Zhou (1996); Barndor�-Nielsen et al. (2004) (add BNSHL) propose the

use of kernel estimators to eliminate the bias that is caused by the auto-correlation microstructure noise

auto-correlation. These estimators are in the same spirit as long run variance estimators that are common

in time series analysis.

RVKernel = γ̂0 +
H∑

h=1

k
(h− 1

H

){
γ̂h + ˆγ−h

}
(8)

γ̂h ≡
m∑

i=1

yi,myi+h,m (9)

and can be estimated by:

γ̃h ≡
m

m− h

m∑
i=1

yi,myi+h,m (10)
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Figure 5: Available Kernels

Figure 4B demonstrates kernel estimates for the rectangular kernel and sampled at the highest frequency as
a function of lags overlayed on the original signature plot from Figure 3B.

# Figure 4B

> plot(x=test.sig$x[-(1:20)],y=test.sig$y[-(1:20)],ylab="Realized Variance", xlab="Sampling Frequency (Minutes)",

main="MSFT",sub=dates.example[[1]])

> test.rect <- rSignature(1:400, msft.real.cts[[1]], xscale=1/20, type="kernel", args=list(type="rectangular"))

> lines(test.rect, col=2, lwd=2)

> axis(3, c(0,(1:5)*4), c("Lags:",as.character((1:5)*80)))

> legend(15,.0008,c("Rectangular"), lwd=c(2), col=c(2))

The rectangular kernel realized variance estimator does have less variability with respect to its inputs (lags)
than the traditional realized variance estimator with respect to sampling frequency. However, we will see
that di�erent kernels will give far better results.

The available kernels, k
(

h−1
H

)
, are the same as in Barndor�-Nielsen et al. (2004):

> rKernel.available()

[1] "Rectangular" "Bartlett" "Second" "Epanechnikov" "Cubic" "Fifth"

[7] "Sixth" "Seventh" "Eighth" "Parzen" "TukeyHanning" "ModifiedTukeyHanning"

And are plotted below:

# Figure 5

> par(mfrow=c(3,4))

> x <- (0:100)*.01

> for(i in 1:length(rKernel.available()))

plot(x=x,y=sapply(x, FUN="rKernel", type=rKernel.available()[i]),

xlab="", ylab="", main=rKernel.available()[i],ylim=c(0,1))

In Figure 6A the Modi�ed Tukey-Hanning and Bartlett kernels are displayed and show better performance
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with respect to variability of the estimators with respect to their inputs. This is important to the practitioner
because it means that their estimate will not vary much with their choice of lag length. Payseur (2007)

recommends the use of this type of plot as a �spot check� to verify that the estimators are performing in a
consistent manor as the data used changes.

# Figure 6A

> par(mfrow=c(1,1))

> plot(x=test.sig$x[-(1:20)],y=test.sig$y[-(1:20)],ylab="Realized Variance", xlab="Minutes", main="MSFT",sub=dates.example[[1]])

> test.mth <- rSignature(1:400, msft.real.cts[[1]], xscale=1/20, type="kernel", args=list(type="mth"))

> test.bart <- rSignature(1:400, msft.real.cts[[1]], xscale=1/20, type="kernel", args=list(type="bartlett"))

> lines(test.mth, col=3, lwd=2)

> lines(test.bart, col=4, lwd=2)

> axis(3, c(0,(1:5)*4), c("Lags:",as.character((1:5)*80)))

> legend(15,.0008,c("Mod T-H", "Bartlett"), lwd=c(2,2), col=c(3,4))

2.3 Subsample Estimators

Zhang et al. (2005) categorized RV (m) as the �fth-best realized variance estimator, choosing a lower sampling

frequency as fourth-best, and sampling at an optimal lower sampling frequency as third-best. Their �rst

and second best approaches are based on the idea of sub-sampling. When we choose a lower frequency,

or sparse grid, we are only using one portion of the data set. For example, if we use minute prices for an

asset and m =5 minutes then every �fth data point is used in our realized variance calculation, de�ned

by observations: 1, 6, 11, 16, ... . This ignores the other sub-samples that are available, such as: 2, 7,

12, 17, ... and 3, 8, 13, 18, ... . The full grid, containing every observation, is de�ned as G and n = |G|,

or the size of G. G is partitioned into k non-overlapping sub-grids G(k) of size ,nk . The scenario above

yields G = {pt1 , pt2 , pt3 , pt4 , pt5 , pt6 , pt7 , pt8 , pt9 , pt10 , pt11 , ...} and returns are calculated from the appropriate

sub-grid, G(5)
1 = {pt1 , pt6 , pt11 , ...} and G(5)

2 = {pt2 , pt7 , pt12 , ...}. Then realized variance of each sparse grid,

G(k)
i , is calculated by:

RV (k,i)
sparse ≡

nk∑
tjt,t,+j,∈Gi

(ptj,+, − ptj
)2 (11)

where ptj,+, is the next observation of grid i. The traditional realized variance estimator, RV (m), is equal to

RV
( 1

m ,1)
sparse.

Their second best realized variance estimate is the average of (11) over all of the possible grids, or sub-

samples,

RV
(k)
Avg =

1
k

k∑
i=1

RV (k,i)
sparse (12)

The estimator (12), however, is still biased at high frequencies but it greatly lowers the variability of the
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realized variance estimate. The �rst best estimator, known as the two timescales estimator, couples RV
(k)
Avg

with realized variance calculated at the highest frequency possible, RV
(all)
sparse :

RV
(k)
TS = RV

(k)
Avg −

nk

n
RV (all)

sparse (13)

The two-timescale estimator may be improved with a small sample adjustment

RV
(k)
TS,Adj = (1− nk

n
)−1RV

(k)
TS (14)

Finally, Ait-Sahalia et al. (2005) introduced a further improvement to compensate for a slight underestimation

of RV
(k)
Avg when k is large:

RV
(k)
TS,AA =

n

(k − 1)nk
RV

(k)
TS (15)

which has the same asymptotics as RV
(k)
TS,Adj .

Figure 6B displays a signature plot for the same data, but this data is aligned �rst to a 30 second frequency.
Then the three versions of the two-timescale estimator (13, 14,15) are plotted with respect to the number
of subgrids.

# Figure 6B

test.sig.min <- rSignature(1:120, msft.real.cts[[1]], xscale=1/2, args=list(align.period=30))

> plot(test.sig.min, ylab="Realized Variance", xlab="Minutes", main="MSFT", sub=dates.example[[1]])

> test.tt <- rSignature(1:20, msft.real.cts[[1]], xscale=3, type="timescale", args=list(adj.type="classic", align.period=60))

> test.tt.adj <- rSignature(1:20, msft.real.cts[[1]], xscale=3, type="timescale", args=list(adj.type="adj", align.period=60))

> test.tt.aa <- rSignature(1:20, msft.real.cts[[1]], xscale=3, type="timescale", args=list(adj.type="aa", align.period=60))

> lines(test.tt, col=3, lwd=2) > lines(test.tt.adj, col=4, lwd=2)

> lines(test.tt.aa, col=5, lwd=2)

> axis(3, c(0,(1:5)*12), c("Subgrids:",as.character((1:5)*4)))

> legend(45,.0006,c("Classic", "Adj", "AA"), lwd=c(2,2,2), col=c(3,4,5))

2.4 Single Estimates

The previous two sections demonstrated various realized variance estimators on signature plots. The analysis

shows that one must be careful when they choose what type of estimator to use as well as the inputs to pass

to that estimator. To calculate an estimate with a particular estimator and inputs the rRealizedVariance

function is used. The inputs to this function are similar to the rSignature function.

Below are a few examples of how to use the rRealizedVariance function. The actual input values to each type

of estimator can be found on the help pages for each estimator. These are linked to on the rRealizedVariance

help page which you can �nd using:
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Figure 6A and 6B:Kernel and Two-Timescale Estimates of Realized Variance as a Function of Lags and Subgrids.

> ?rRealizedVariance

Below are various estimates of realized variance.

> > # Traditional Estimate at highest frequency

> rRealizedVariance(x=msft.real.cts[[1]], type="naive", period=1)

[1] 0.004642229

> # Traditional Estimate at one minute frequency

> rRealizedVariance(x=msft.real.cts[[1]], type="naive", period=1, args=list(align.period=60))

[1] 0.0004884795

> # Traditional Estimate at 10 minute frequency

> rRealizedVariance(x=msft.real.cts[[1]], type="naive", period=10, args=list(align.period=60))

[1] 0.0005299257

> # Bartlett Kernel Estimate with minute aligned data at 20 lags

> rRealizedVariance(x=msft.real.cts[[1]], type="kernel", lags=20, args=list(align.period=60, type="Bartlett"))

[1] 0.0003815077

> # Cubic Kernel Estimate with second aligned data at 400 lags

> rRealizedVariance(x=msft.real.cts[[1]], type="kernel", lags=400, args=list(type="Cubic"))

[1] 0.0003986213

> # Two-Timescale Estimate with minute aligned data at 10 subgrids

> rRealizedVariance(x=msft.real.cts[[1]], type="timescale", period=10, args=list(align.period=60))

[1] 0.0003724935

> # Subsample Average Estimate with second aligned data at 600 subgrids

> rRealizedVariance(x=msft.real.cts[[1]], type="avg", period=600) [1] 0.0004016684

3 Realized Covariance

Realized covariance su�ers from a bias toward zero at high frequencies and, similar to realized variance,

this bias disappears at lower frequencies at the cost of more volatile estimates. The high volatility of

the traditional realized covariance estimator motivates the use of one day realized covariance signature

plots. There have been many alternative estimators proposed (Bandi and Russell, 2007,de Pooter et al.,
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Figure 7A and 7B: Percentage of zero co-returns and Average Covariance Signature Plot for January 2, 2004 MSFT and GE

2005,Flemming et al., 2002,Hayashi and Yoshida, 2005,Gri�n and Oomen, 2006,Voev and Lunde, 2006 and

Sheppard, 2006). The traditional realize covariance estimator is a natural extension of RV (m):

RC(m) =
m∑

i=1

yi,mxi,m (16)

The high frequency bias results from non-synchronous trading and zero returns. Campbell et al. (1997)

discuss this problem in detail. When one stock does not change price over an interval, or has a zero return,

then even if the other stock moves, yi,mxi,m = 0. As the sampling frequency increases there are more and

more zero returns and RC(m) becomes a sum of zeros. This produces a downward bias as m → ∞. The

function rc.zero calculates the percentage of zero co-returns at a given sampling frequency.

> rc.zero(x=msft.real.cts[[1]], y=ge.real.cts[[1]], period=1)

[1] 0.9944022

> rc.zero(x=msft.real.cts[[1]], y=ge.real.cts[[1]], period=60)

[1] 0.6419437

This function can be coupled with the rSignature function to view the percentage of zero co-returns at each

sampling frequency:

# Figure 7A

> test.zero <- rSignature(1:1200, x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="zero", xscale=1/60)

> plot(test.zero, ylab="% Zero", xlab="Sampling Frequency (Minutes)", main="MSFT | GE", sub=dates.example[[1]])

The plot shows that for a sampling frequency of �ve minutes or higher there is at least 20% of the co-

returns that are zero. Some of this could be due to the CTS alignment and further investigation using the

rAccumuation, rMarginal, and rScatterReturns functions discussed in section �ve is encouraged.
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Most of the functions in the realized library work for realized variance and covariance calculations. When

the x and y variables are both be speci�ed a covariance result is returned. Gri�n and Oomen (2006) were

the �rst to extend the variance signature plot to covariance. To plot a six day average covariance signature

plot at every �ve seconds of sampling frequency:

# Figure 7B

> plot(rSignature((1:360)*5+1, x=msft.real.cts, y=ge.real.cts, xscale=1/60, iteration.funct="simpleIteration", iterations=1:6),

ylab="Realized Covariance", xlab="Sampling Frequency (Minutes)", main="MSFT | GE", sub=paste(dates.example[[1]],

dates.example[[5]], sep=" - "))

This six day average signature shows the bias towards zero at the highest sampling frequencies like expected.

3.1 Lead-Lag / Kernel Estimators

Gri�n and Oomen (2006); Voev and Lunde (2006)and De Pooter, Martens, and van Dijk (2005) implement

a lead-lag estimator which is just a simple extension of the univariate rectangular kernel estimator. They

set the number of lead and lags to one and adjust the sampling frequency. I have implemented all of the

univariate kernel estimators in a multivariate context as de�ned below.

RCKernel = γ̂0 +
H∑

h=1

k
(h− 1

H

){
ξ̂h + ˆξ−h

}
(17)

ξ̂h ≡
m∑

i=1

yi,mxi+h,m (18)

and if adj=T then a degree of freedom adjustment is made:

ξ̃h ≡
m

m− h

m∑
i=1

yi,mxi+h,m (19)

A one day covariance volatility plot shows that the kernels are less variable with respect to their inputs than
the traditional estimator with respect to sampling period:

# Figure 8A

> test.cov <- rSignature(1:1200,x=msft.real.cts[[1]], y=ge.real.cts[[1]], xscale=1/60)

> test.rect <- rSignature(1:600,msft.real.cts[[1]], ge.real.cts[[1]],type="kernel",args=list(type="rectangular"),

xscale=1/30)

> test.mth <- rSignature(1:600,msft.real.cts[[1]], ge.real.cts[[1]],type="kernel",args=list(type="mth"), xscale=1/30)

> plot(test.cov, ylab="Realized Covariance", xlab="Minutes", main="GE | MSFT")

> lines(test.rect, col=3, lwd=1)

> lines(test.mth, col=4, lwd=2)

> axis(3, c(0,(1:5)*4), c("Lags:",as.character((1:5)*120)))



3 REALIZED COVARIANCE 17

Figure 8A and 8B: Percentage of zero co-returns and Average Covariance Signature Plot for January 2, 2004 MSFT and GE

> legend(13,.00015,c("Rectangular", "Mod TH"), lwd=c(1,2), col=c(3,4))

3.2 Hayashi-Yoshida

An estimation procedure that solves the problem of non-synchronicity, assuming no micro structure noise, is

proposed by Hayashi and Yoshida (2005). The de�ning feature of this TTS estimator is that it adds products

of returns to the sum as long as the corresponding intervals overlap. Thus, a given tick return of asset y is

multiplied by several tick returns of asset x. First we de�ne the transaction times of the returns for each

asset, y, and x.

Πy = {ty1, ty2, ..., t
y
ny
}, Πx = {tx1 , tx2 , ..., txnx

}

where the size of Πy may not be the same as the size of Πx. We choose a base asset, say y, and we multiply

the �rst return of y by all of the returns of x where txi ≤ ty1. The second return of y is multiplied by all of

the returns of x where ty1 < txi ≤ ty2 and so on. The results from each time period are summed to form the

estimator:

RC
(m)
HY =

ny∑
i=1

yty
i
,mxtx

j
∈(ty

i−1,ty
i
] ,m (20)

The following code displays a realized covariance signature plot with the Hyashi-Yoshida at di�erent TTS
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sampling frequencies5.

# Figure 8B

> test.hy <- rSignature(1:600,msft.real.tts[[1]], ge.real.tts[[1]],type="hy",args=list(align.period=1), xscale=1/30)

> plot(test.cov, ylab="Realized Covariance", xlab="Minutes", main="GE | MSFT")

> lines(test.hy, col=2, lwd=2)

> axis(3, c(0,(1:5)*4), c("Tick Period:",as.character((1:5)*120)))

> legend(13,.00015,c("Hyashi-Yoshida"), lwd=c(2), col=c(2))

3.3 Sub-Sample Estimators

There has been very little attention focused on multivariate extensions of the average sub-sample (12) and

timescale estimators (13 - 15). de Pooter et al. (2005) use a multivariate extension of the adjusted timescale

estimator, RV
(k)
TS,Adj , in their extension of Flemming et al. (2002) and found that there is only a marginal

improvement in their evaluation criteria. We �nd, however, that the sub-sampling estimator drastically

improves on the e�ciency of the realized covariance estimates. Given two assets that are pre-aligned to the

same calendar time the multivariate sub-sample estimator of realized covariance are

RC(k,i)
sparse ≡

nk∑
tjt,t,+j,∈Gi

(py
tj,+, − py

tj
)(px

tj,+, − px
tj

) (21)

RC
(k)
Avg =

1
k

k∑
i=1

RC(k,i)
sparse (22)

Due to the bias towards zero at high frequencies, any multivariate extension of the timescale estimators (13

- 15) are essentially equivalent to (22), except for the constant used to adjust for small samples or a large k.

RC
(k)
TS = RC

(k)
Avg −

nk

n
RC(all)

sparse ≈ RC
(k)
Avg (23)

This means that, at high frequencies, setting the type of realized covariance to �timescale� and �avg� should
yield very similar results. However, this could it is still useful to specify two-timescale for correlation
calculations.

3.4 Single Estimates and Covariance Matrices

Single estimates can be calculated with the rRealized.variance function by specifying an x and y argument.

An error message is printed if the returns are not aligned using CTS for the estimators that need that.

5Note that this is currently the only function that needs a list as its data object. This is because the Hayashi-Yoshida
estimator uses execution times.
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> > # Traditional Estimate at highest frequency

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="naive", period=1)

[1] -1.279923e-05

> # Traditional Estimate at one minute frequency

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="naive", period=1, args=list(align.period=60))

[1] 5.116529e-05

> # Traditional Estimate at 10 minute frequency

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="naive", period=10, args=list(align.period=60))

[1] 7.856014e-05

> # Bartlett Kernel Estimate with minute aligned data at 20 lags

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="kernel", lags=20, args=list(align.period=60,

type="Bartlett"))

[1] 6.553482e-05

> # Cubic Kernel Estimate with second aligned data at 400 lags

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="kernel", lags=400, args=list(type="Cubic"))

[1] 0.0001019466

> # Lead-Lag with one lag at one minute frequency

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="kernel", lags=1, args=list(align.period=60))

[1] 0.0001179901

> # Subsample Average Estimate with second aligned data at 600 subgrids > rRealizedVariance(x=msft.real.cts[[1]],

y=ge.real.cts[[1]], type="avg", period=600)

[1] 7.610897e-05

A covariance matrix can be calculated by specifying only the x input variable and merging multiple realizedObjects.
Currently this is not a vectorized calculation so it will become slower and slower as the number of assets

increases. The number of individual calculations is k(k+1)
2 .

> # Traditional Estimate at highest frequency

> rRealizedVariance(x=merge(msft.real.cts[[1]], ge.real.cts[[1]]), type="naive", period=1)

[,1] [,2]

[1,] 4.642229e-03 -1.279923e-05

[2,] -1.279923e-05 1.140889e-03

> # Traditional Estimate at 10 minute frequency

> rRealizedVariance(x=merge(msft.real.cts[[1]], ge.real.cts[[1]]), type="naive", period=10, args=list(align.period=60))

[,1] [,2]

[1,] 5.299257e-04 7.856014e-05

[2,] 7.856014e-05 1.212815e-04

> # Lead-Lag with one lag at one minute frequency

> rRealizedVariance(x=merge(msft.real.cts[[1]], ge.real.cts[[1]]), type="kernel", lags=1, args=list(align.period=60))

[,1] [,2]

[1,] 0.0004402754 0.0001179901

[2,] 0.0001179901 0.0001567376

> # Subsample Average Estimate with second aligned data at 600 subgrids

> rRealizedVariance(x=merge(msft.real.cts[[1]], ge.real.cts[[1]]), type="avg", period=600)

[,1] [,2]

[1,] 4.016684e-04 7.610897e-05

[2,] 7.610897e-05 1.329599e-04

4 Realized Correlation

Realized correlation is a natural extension in the realized variance and covariance literature. Epps (1979) was

the �rst to document that increasing the frequency of observations in a correlation calculation will lead to a

bias toward zero. The equation for realized correlation is:
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Rρ(m) =
RC

(m)
x,y√

RV
(m)
x

√
RV

(m)
y

(24)

and it is easy to see why this bias towards zero exists since the numerator is biased towards zero and the

denominator is biased upwards at high frequencies. The estimation of realized correlation with the realized

library is simple. The rRealized.variance and rSignature function have an argument called cor that is set to

true. Along with this �ag both x and y must be speci�ed, or a matrix for x for a correlation matrix.

The idea of an optimal realized correlation calculation is slightly more complicated than a realized variance

or covariance due to the fact that it involves choosing the best estimator and inputs for RC
(m)
x,y , RV

(m)
y , and

RV
(m)
x . Sheppard (2006) introduces the idea of �pseudo� realized correlation where the realized variances are

sampled at a di�erent frequency then the realized covariance. The realized library only calculates realized

correlation with all the same estimator and inputs, however, using the rv.* and rc.* functions you can create

any realized correlation estimate. This also means that there is no Hayashi-Yoshida correlation estimator.

4.1 Single Estimates and Correlation Matrices

The rRealizedVariance and rSignature functions will calculate realized correlation when there are multiple

log-return vectors passed in and the cor �ag is set to true. Below is an example of di�erent types of realized

correlation for MSFT and GE May 1, 1997.

> # Traditional Estimate at highest frequency

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="naive", period=1, cor=T)

[1] -0.005561591

> # Traditional Estimate at one minute frequency

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="naive", period=1, args=list(align.period=60),

cor=T)

[1] 0.1381217

> # Traditional Estimate at 10 minute frequency

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="naive", period=10, args=list(align.period=60),

cor=T)

[1] 0.3098827

> # Bartlett Kernel Estimate with minute aligned data at 20 lags

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="kernel", lags=20, args=list(align.period=60,

type="Bartlett"), cor=T)

[1] 0.31984

> # Cubic Kernel Estimate with second aligned data at 400 lags

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="kernel", lags=400, args=list(type="Cubic"),

cor=T)

[1] 0.4530968

> # Lead-Lag with one lag at one minute frequency

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="kernel", lags=1, args=list(align.period=60),

cor=T)

[1] 0.4491556
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> # Subsample Average Estimate with second aligned data at 600 subgrids

> rRealizedVariance(x=msft.real.cts[[1]], y=ge.real.cts[[1]], type="avg", period=600, cor=T)

[1] 0.3293378

For correlation matrices:

> > # Correlation Matrices

> # Traditional Estimate at highest frequency

> rRealizedVariance(x=merge(msft.real.cts[[1]], ge.real.cts[[1]]), type="naive", period=1, cor=T)

[,1] [,2]

[1,] 1.000000000 -0.005561591

[2,] -0.005561591 1.000000000

> # Traditional Estimate at 10 minute frequency

> rRealizedVariance(x=merge(msft.real.cts[[1]], ge.real.cts[[1]]), type="naive", period=10, args=list(align.period=60),

cor=T)

[,1] [,2]

[1,] 1.0000000 0.3098827

[2,] 0.3098827 1.0000000

> # Lead-Lag with one lag at one minute frequency

> rRealizedVariance(x=merge(msft.real.cts[[1]], ge.real.cts[[1]]), type="kernel", lags=1, args=list(align.period=60),

cor=T)

[,1] [,2]

[1,] 1.0000000 0.4491556

[2,] 0.4491556 1.0000000

> # Subsample Average Estimate with second aligned data at 600 subgrids

> rRealizedVariance(x=merge(msft.real.cts[[1]], ge.real.cts[[1]]), type="avg", period=600, cor=T)

[,1] [,2]

[1,] 1.0000000 0.3293378

[2,] 0.3293378 1.0000000

5 Plotting Tools

One day signature plots allow us to see the variation of realized variance estimates with respect to their

inputs. Realized accumulation and marginal contribution plots gives us the ability to attribute this variation

to particular observations in the high frequency data set.

5.1 Realized Accumulation and Marginal Contribution Plots

Payseur (2007) uses marginal contribution and realized accumulation plots over the period of a single estimate

for traditional realized estimators. This analysis shows that it is not only the sampling frequency that creates

highly volatile estimates, but also the alignment of the returns. It is useful to couple the rCumSum function

with the rAccumulation function as follows:

# Figure 9A

> cumm <- list()

> cumm[[1]] <- rCumSum(msft.real.cts[[1]], period=1, align.period=60)

> cumm[[2]] <- rCumSum(msft.real.cts[[1]], period=10, align.period=60)

> cumm[[3]] <- rCumSum(msft.real.cts[[1]], period=20, align.period=60)

> cumm[[4]] <- rCumSum(msft.real.cts[[1]], period=30, align.period=60)

> accum <- list()

> accum[[1]] <- rAccumulation(msft.real.cts[[1]], period=10, align.period=60)
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Figure 9A and 9B:Realized Accumulation and Marginal Contribution to Realized Variance Plots

> accum[[2]] <- rAccumulation(msft.real.cts[[1]], period=20, align.period=60)

> accum[[3]] <- rAccumulation(msft.real.cts[[1]], period=30, align.period=60)

> par(mfrow=c(2,1))

> plot(cumm[[1]], xlab="", ylab="Cumulative Ruturns", main="MSFT", sub=dates.example[[1]], type="p", col=16, lwd=2)

> lines(cumm[[2]], col=2, lwd=2)

> lines(cumm[[3]], col=3, lwd=2)

> lines(cumm[[4]], col=4, lwd=2)

> plot(accum[[1]], xlab="", ylab="Realized Accumulation", type="l",main="MSFT", sub=dates.example[[1]], col=2, lwd=2)

> lines(accum[[2]], col=3, lwd=2)

> lines(accum[[3]], col=4, lwd=2)

The three realized variance accumulation lines display the estimate builds throughout the trading day. Near

the end of the day the 10 minute aligned realized variance estimate, in red, is aligned in a particular way to

include a valley in the realized variance calculation that is not included in the other two. The accumulation

plot allows us to see how big of an impact this alignment has on the estimate.

The marginal contribution to a realized estimate shows how much each high frequency observation e�ects

the �nal estimate.

# Figure 9B

>par(mfrow=c(2,1))

> plot(cumm[[2]], xlab="", ylab="Cumulative Ruturns", main="MSFT", sub=dates.example[[1]], type="p")

> barplot(rMarginal(msft.real.cts[[1]], period=10, align.period=60)$y, main="Marginal Contribution Plot")

Similar to all of the functions in this library the rMarginal and rAccumulation plots can also be used for

realized covariance and correlation. The only di�erence in the function call is to specify an x and a y. To

plot an accumulation plot for realized covariance aligned at 10 minutes intervals:

# Figure 10A

> cumm.ge <- list()

> cumm.ge[[1]] <- rCumSum(ge.real.cts[[1]], period=1, align.period=60)

> cumm.ge[[2]] <- rCumSum(ge.real.cts[[1]], period=10, align.period=60)
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Figure 10A and 10B : Accumulation Plot for the Realized Covariance and Returns Scatter Plot for MSFT and GE January 2, 2002

> accum <- list()

> accum[[1]] <- rAccumulation(msft.real.cts[[1]], y=ge.real.cts[[1]], period=10, align.period=60)

> par(mfrow=c(3,1)) > plot(cumm[[1]], xlab="", ylab="Cumulative Ruturns", main="MSFT", sub=dates.example[[1]], type="p",

col=16)

> lines(cumm[[2]], col=2, lwd=3)

> plot(cumm.ge[[1]], xlab="", ylab="Cumulative Ruturns", main="GE", sub=dates.example[[1]], type="p", col=16)

> lines(cumm.ge[[2]], col=2, lwd=3)

> plot(accum[[1]], xlab="", ylab="Realized Co-Accumulation", type="l",main="MSFT | GE", sub=dates.example[[1]],

col=2)

In this example the realized covariance appears to build at a fairly constant pace except for two or three

big jumps where the stocks move together. To see how the variability in the realized covariance estimate is

created, run the same plot commands with sampling periods of six to 20 minutes and you will most likely

see that for some of the timings the alignment will be such that the stocks will not move together during

these same two or three times.

The additive nature of the realized estimators allows implementation of both the accumulation and marginal

contribution plots for all of the estimators above by adjusting the interval Ti,m−Ti−1,m . First, the estimation

is performed on a subset of the whole periods worth of data. Second, one more observation is added and the

estimation is performed again. As observations are added an accumulation plot is created and the marginal

plot can be constructed easily. This functionality will be included in the 1.0 release.

5.2 Scatter Plots

The rMarginal function plots the products or cross products of returns, however, it is also informative to

look at the returns themselves using a scatter plot. The function rScatterReturns displays a scatter plot of

returns for a given sampling period. For one minute returns of MSFT and GE on January 2, 2004:
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# Figure 10B

>rScatterReturns(msft.real.cts[[1]],y=ge.real.cts[[1]], period=1, align.period=20,ylab="GE",xlab="MSFT",numbers=F)

There are many points that lie on the two zero lines, which shows the non synchronous trading problem.

There is also one big positively correlated log-return that will add to the �nal estimate where GE and MSFT

moved .002 and .003 during the same sample period.

6 Example: Importing Data

Each example in this users manual uses cleaned data that is preloaded into a realizedObject. However,

everyone using this library will use di�erent data from di�erent sources. In this section I give an example of

how to get a �at �le of data into a realizedObject.

For this example I import FX data from http://ratedata.gaincapital.com/. I have also included the three

�les eurusd.csv, usdjpy.csv, and eurjpy.csv in the library zip �le. There are three simple functions that you

must write to import this data properly, all of these depend on the datasource, data format and timestamp

format. Before we get to these functions let's load the �le and look at it the �rst ten rows to see the format:

> path <- "d:/dev/" #change this to the directory that the .csv files live in

> eur.usd.05.2007 <- read.table(paste(path, "eurusd.csv", sep=""), stringsAsFactors=F, sep=",")

> usd.jpy.05.2007 <- read.table(paste(path, "usdjpy.csv", sep=""), stringsAsFactors=F, sep=",")

> eur.jpy.05.2007 <- read.table(paste(path, "eurjpy.csv", sep=""), stringsAsFactors=F, sep=",")

> eur.usd.05.2007[1:10,]

V1 V2 V3 V4 V5 V6

1 328975061 EUR/USD 2007-05-27 17:00:05 1.3449 1.3452 D

2 328975103 EUR/USD 2007-05-27 17:05:24 1.3448 1.3451 D

3 328975235 EUR/USD 2007-05-27 17:36:02 1.3447 1.3450 D

4 328975395 EUR/USD 2007-05-27 17:44:06 1.3446 1.3449 D

5 328975412 EUR/USD 2007-05-27 17:44:21 1.3447 1.3450 D

6 328975424 EUR/USD 2007-05-27 17:44:36 1.3446 1.3449 D

7 328975466 EUR/USD 2007-05-27 17:45:33 1.3445 1.3448 D

8 328975514 EUR/USD 2007-05-27 17:45:50 1.3446 1.3449 D

9 328975520 EUR/USD 2007-05-27 17:45:52 1.3445 1.3448 D

10 328975522 EUR/USD 2007-05-27 17:45:54 1.3446 1.3449 D

For this simple example I will demonstrate how to get the �rst days worth of data and work with that,
obviously your approach may vary. This data is 24 hour data so our integration bounds for integrated
variance are from 0:00 to 23:59:59 for each day. This �rst function will subset the original data to return a
particular day of data by matching the date string in column three.

> getT <- function(x, dateStr,...)

{

y <- x[,3]

x[substring(y,1,10)==dateStr,]

}

We will work with data for May 5, 2007:

> eur.usd.05.30.2007 <- getT(eur.usd.05.2007, "2007-05-30")

> usd.jpy.05.30.2007 <- getT(usd.jpy.05.2007, "2007-05-30")

> eur.jpy.05.30.2007 <- getT(eur.jpy.05.2007, "2007-05-30")
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Figure 11A and 11B : Realized Variance Signature Plot and Realized Correlation Signature Plot

The second function that we will create is due to the fact that we are looking at quote data with a bid and
ask. It is common practice in the realized variance literature to use the midquote, or average of the two
quotes.

> midQuote <- function(x, bid.index = 4, ask.index = 5)

{

(x[,bid.index] + x[,ask.index])/2

}

The realizedObject constructor function needs data (in the form of prices or returns), as well as, the
timestamp in milliseconds. We will calculate milliseconds from the time portion of colum three.

> toMilliseconds <- function(x,...)

{

ans <- 1000 * as.numeric(substring(x, 12,13)) * 60 * 60 +

1000 * as.numeric(substring(x, 15,16)) * 60 +

as.numeric(substring(x, 18,19)) * 1000

ans

}

We can use these two functions with the realizedObject constructor function to create our realizedObjects.
The parameters millisstart and millisend specify the integration bounds for the integrated variance and
are defaulted to normal market hours. Since we are looking at 24 hour FX data we need to change these to
0:00 and 23:59:59 respectively.

eur.usd.real <- realizedObject(list(data=midQuote(eur.usd.05.30.2007),

milliseconds=toMilliseconds(eur.usd.05.30.2007[,3])),

makeReturns=T, cts=T, millisstart=0000, millisend=1000*24*60*60)

> eur.jpy.real <- realizedObject(list(data=midQuote(eur.jpy.05.30.2007),

milliseconds=toMilliseconds(eur.jpy.05.30.2007[,3])),

makeReturns=T, cts=T, millisstart=0000, millisend=1000*24*60*60)

> usd.jpy.real <- realizedObject(list(data=midQuote(usd.jpy.05.30.2007),

milliseconds=toMilliseconds(usd.jpy.05.30.2007[,3])),

makeReturns=T, cts=T, millisstart=0000, millisend=1000*24*60*60)

Now these objects can be used with any function from in this manual. A variance signature plot of
eur.usd.05.30.2007 with data aligned to 30 seconds with Bartlett kernel estimates overlayed as a function of
lags:

# Figure 11A

> test.sig <- rSignature(1:120, eur.usd.real, xscale=1/2, args=list(align.period=30))

> test.bart <- rSignature(1:120, eur.usd.real, type="kernel",xscale=1/2, args=list(align.period=30, type="bartlett"))
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> plot(test.sig, ylab="Realized Variance", xlab="Minutes", main="Eur.Usd", sub="05/30/2007")

> lines(test.bart, col=2, lwd=2)

> axis(3, c(0,(1:10)*6), c("Lags:",as.character((1:10)*12)))

A correlation signature plot:

# Figure 11B

> test.sig <- rSignature(1:60, x=eur.usd.real, y=eur.jpy.real, xscale=1/2, args=list(align.period=30), cor=T)

> test.bart <- rSignature(1:60, x=eur.usd.real, y=eur.jpy.real, type="kernel",xscale=1/2, args=list(align.period=30,

type="bartlett"), cor=T)

> plot(test.sig, ylab="Realized Covariance", xlab="Minutes", main="Eur.Usd | Eur.Jpy", sub="05/30/2007")

> lines(test.bart, col=2, lwd=2)

> axis(3, c(0,(1:10)*3), c("Lags:",as.character((1:10)*6)))
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