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Abstract

S+Finmetrics 3.0 and Yan and Zivot (2003) contain high frequency functions. Data importing,
cleaning, and alignment functions are particularly useful to create inputs to this Realized library. This
is a beta release and is meant to solidify the accuracy and useability of the software. Please contact me
with any bugs, suggestions or comments at spayseur@u.washington.edu. Please site if used for academic
purposes.
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1 Interfacing with Finmetrics 3.0

S+Finmetrics 3.0 and Yan and Zivot (2003) contain high frequency manipulation functions, including data

cleaning, data alignment, and data importing. Each library creates S+TimeSeries objects. In this supplement

I discuss how to interact with the Realized library functions using S+TimeSeries objects with examples. This

is meant to supplement to the User's Manual, which contains a more robust discussion of the realized variance

and covariance literature. All of the Realized library1 functions have the ability to take timeSeries objects as

the x and y parameters. However, the conversion from a timeSeries object to an object of type realizedObject

is compuationally intensive. I recommend that you convert the timeSeries to a realizedObject if you will be

doing multiple calculations. Below is a script created to interact with S+Finmetics 3.0 and the �rst part

of it is described in Zivot (available in the Finmetrics 3.0 directory). The data is available in Eric Zivot's

website: http://faculty.washington.edu/ezivot/.

Below the trade_msft.txt and trade_ge.txt �les from the NYSE Trades and Quotes database are loaded

into S+TimeSeries objects, reordered, cleaned and aligned to the trading day.

> module(finmetrics)

S+FinMetrics Version 3.0.1 for Microsoft Windows : 2007

> dataPath = "d:/dev/zivot.highFreq/" # Change to your data directory!

> taqData = paste(dataPath, "trade_msft.txt", sep="")

> msftt.df = importData(file=taqData, keep=c("price", "siz", "tdate", "ttim"),

+ delim="|", stringsAsFactors=F, time.in.format="%d%m%y", big=F)

> pos = msftt.df$tdate + msftt.df$ttim/(24*60*60)

> pos@format = "%02m/%02d/%04Y %02H:%02M:%02S"

> msftt.ts = timeSeries(pos=pos, data=msftt.df[, c("price", "siz")])

> msftt.ts = seriesReorder(msftt.ts)

> msftt.cleanPrice.ts = seriesClean(msftt.ts[,"price"], n=51, k = 25, maxDev=3)

> msftt.cleanPrice.ts = excludeTimes(msftt.cleanPrice.ts, exclude="closed", openTime=timeCalendar(h=9,min=30),

+ closeTime=timeCalendar(h=16), type="d")

> taqData = paste(dataPath, "trade_ge.txt", sep="")

> get.df = importData(file=taqData, keep=c("price", "siz", "tdate", "ttim"), delim="|", stringsAsFactors=F,

+ time.in.format="%d%m%y", big=F)

> pos = get.df$tdate + get.df$ttim/(24*60*60)

> pos@format = "%02m/%02d/%04Y %02H:%02M:%02S"

> get.ts = timeSeries(pos=pos, data=get.df[, c("price", "siz")])

> get.ts = seriesReorder(get.ts)

> get.cleanPrice.ts = seriesClean(get.ts[,"price"], n=51, k = 25, maxDev=3)

> get.cleanPrice.ts = excludeTimes(get.cleanPrice.ts, exclude="closed", openTime=timeCalendar(h=9,min=30),

+ closeTime=timeCalendar(h=16), type="d")

The dayPlot function is used to plot the high frequency data for MSFT. Figures 12 and 13 show clean

and unclean data respectively.

> # Figure 12

> dayPlot(msftt.ts[,1])

> # Figure 13

> dayPlot(msftt.cleanPrice.ts)

1
From Beta 0.8 on.
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Figure 12: MSFT Day Plot Pre-Clean

Figure 13: MSFT Day Plot Post-Clean
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Figure 14A and 14B : Futher cleaning

If you do not have pre-cleaned data then it is important to realized that the seriesClean function does

not work perfect for all datasets and requires tuning of the parameters to properly catch outliers, as well as,

prevent over �ltering of the data. In the TAQ data from the �les in this supplement there are some days

that contain a high amount of outliers. One of these days is May 5th, 1997 for General Electric. Figure 14A

is a plot of the data after it has been cleaned.

> # Figure 14A

> plot(get.cleanPrice.ts[timeEvent("5/13/1997"), ])

Figure 14A shows that there are some prices that are over $1000. Studying the data further it appears

that there were some trades that erronously had $1000 added to each. For a quick �x in this supplement

I just subtract 1000 from each of these trades. Again, if you are using unclean data you should develope a

strategy for cleaning that involves seriesClean, as well as, spot checks to be sure your parameters are tuned

properly. The nature of realized calculations can make outliers a very big issue.

> ind <- get.ts[, "price"] > 1000

> get.ts@data[ind, "price"] <- (get.ts[ind, "price"]@data - 1000)

> get.cleanPrice.ts = seriesClean(get.ts[, "price"], n = 51, k = 25, maxDev = 3)

> get.cleanPrice.ts = excludeTimes(get.cleanPrice.ts, exclude = "closed", openTime = timeCalendar(h = 9, min = 30),

+ closeTime = timeCalendar( h = 16), type = "d")

> # Figure 14B

> plot(get.cleanPrice.ts[timeEvent("5/13/1997"), ])

Figure 14B shows May 5th, 1997 for General Electric after I altered the data by hand and called seriesData

again. while this is still not perfect it will work for now.

Now that we have our TAQ data loaded we can use the realized library to perform various calculations.

The theory and citations can be found in the Realized User's Manual. The realized library can take timeSeries

as arugments to it'a main functions, however, it is more e�cient to convert these to class 'realizedObject'
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Figure 15 and 16

so that each call to the realized functions does not need to convert the timeSeries. To compute traditional

realized variance sample at �ve minute sampling frequency for May 1, 1997 Microsoft:

> library(realized)

> msftt.real.19970105 <- realizedObject(msftt.cleanPrice.ts[timeEvent("5/1/1997"), ], cts = T, makeReturns = T)

> rRealizedVariance(msftt.cleanPrice.ts[timeEvent("5/1/1997"), ], period = 5, args = list(align.period = 60),

+ cts = T, makeReturns = T)

[1] 0.0004817088

or using the realizedObject:

> rRealizedVariance(msftt.real.19970105, period = 5, args = list(align.period = 60), cts = T)

[1] 0.0004817088

A one day realized variance signature plot for May 1, 1997 for MSFT for every second from one second

to 20 minutes is displayed in Figure 15.

> # Figure 15

> real.naive <- rSignature(1:1800, x = msftt.real.19970105, type = "naive", xscale = 1/60)

> plot(real.naive, xlab = "Sampling Frequency (Minutes)", ylab = "Realized Variance", main = "MSFT 5/1/1997", cex

= 0.5)

Figure 16 shows the same signature plot omitting the �rst 30 seconds in order to show the variability of

the estimation. It also displays three di�erent kernel estimators as a function of lags (shown at the top of

the plot). These three kernel estimates use the Rectangular, Bartlett and Modi�ed Tukey-Hanning kernels

with the data aligned to a one minute frequency.

> # Figure 16

> plot(x = real.naive$x[ - c(1:30)], y = real.naive$y[ - c(1:30)], xlab = "Sampling Frequency (Minutes)",
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+ ylab = "Realized Variance", main = "MSFT 5/1/1997", cex = 0.5)

> # Bartlett kernel

> Rectangular kernel real.rect <- rSignature(1:60, x = msftt.real.19970105, type = "kernel", xscale = 1/2,

+ args = list(align.period = 60, type = "rectangular"))

> lines(real.rect, col = 2, lwd = 2, lty = 1)

> axis(3, c(0, (1:6) * 5), c("Lags:", as.character((1:6) * 10)))

> # Bartlett kernel

real.bart <- rSignature(1:60, x = msftt.real.19970105, type = "kernel", xscale = 1/2,

+ args = list(align.period = 60, type = "bartlett"))

> lines(real.bart, col = 3, lwd = 2, lty = 1)

> # Modified Tukey Hanning kernel

real.mth <- rSignature(1:60, x = msftt.real.19970105, type = "kernel", xscale = 1/2,

+ args = list(align.period = 60, type = "mth"))

> lines(real.mth, col = 4, lwd = 2, lty = 1)

Using a one minute sampling frequency with a kernel estimator is what Barndor�-Nielsen et al. (2004)

suggest. However, with the realized library it is easy to try di�erent sampling frequencies. I have found that

if the data is clean the highest sampling frequency create estimates that are less variable with respect to

their inputs. Figure 17 displays the same one day signature plot as above, however, the kernel estimates use

the highest sampling frequency possible.

> # Figure 17

> plot(x = real.naive$x[ - c(1:30)], y = real.naive$y[ - c(1:30)], xlab = "Sampling Frequency (Minutes)",

+ ylab = "Realized Variance", main = "MSFT 5/1/1997", cex = 0.5)

> real.rect <- rSignature(1:300, x = msftt.real.19970105, type = "kernel", xscale = 1/10,

+ args = list(align.period = 1, type = "rectangular"))

> lines(real.rect, col = 2, lwd = 1, lty = 2)

> axis(3, c(0, (1:6) * 5), c("Lags:", as.character((1:6) * 50)))

> # Bartlett kernel

> real.bart <- rSignature(1:300, x = msftt.real.19970105, type = "kernel", xscale = 1/10,

+ args = list(align.period = 1, type = "bartlett"))

> lines(real.bart, col = 3, lwd = 2, lty = 1)

> # Modified Tukey Hanning kernel

> real.mth <- rSignature(1:300, x = msftt.real.19970105, type = "kernel", xscale = 1/10,

+ args = list(align.period = 1, type = "mth"))

> lines(real.mth, col = 4, lwd = 2, lty = 1)

> legend(20, 0.00065, c("Rectangular", "Bartlett", "MTH"), lwd = c(1, 2, 2), col = c(2, 3, 4), lty = c(2, 1, 1))

The plots above were created all in calendar time sampling (CTS). To see how these estimates change

when tick time sampling (TTS) is used we set cts = F. These are displayed in Figure 18. The di�erence here

is that instead of sampling every second in the signature plot, we are sampling every tick. Notice that TTS

cannot be used for most covariance or correlation calculations.

> # Figure 18

> msftt.real.19970105.tts <- realizedObject(msftt.cleanPrice.ts[timeEvent( "5/1/1997"), ], cts = F,

+ makeReturns = T)

> real.naive.tts <- rSignature(1:1800, x = msftt.real.19970105.tts, type = "naive", xscale = 1/60)

> plot(x = real.naive.tts$x[ - c(1:30)], y = real.naive.tts$y[ - c(1:30)],

+ xlab = "Sampling Frequency (Ticks)", ylab = "Realized Variance", main = "MSFT 5/1/1997", cex = 0.5)

> real.rect <- rSignature(1:300, x = msftt.real.19970105.tts, type = "kernel", xscale = 1/10,

+ args = list(align.period = 1, type = "rectangular"))

> lines(real.rect, col = 2, lwd = 1, lty = 2)

> axis(3, c(0, (1:6) * 5), c("Lags:", as.character((1:6) * 50)))
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Figure 17 and 18

> # Bartlett kernel

> real.bart <- rSignature(1:300, x = msftt.real.19970105.tts, type = "kernel", xscale = 1/10,

+ args = list(align.period = 1, type = "bartlett"))

> lines(real.bart, col = 3, lwd = 2, lty = 1)

> # Modified Tukey Hanning kernel

> real.mth <- rSignature(1:300, x = msftt.real.19970105.tts, type = "kernel", xscale = 1/10,

+ args = list(align.period = 1, type = "mth"))

> lines(real.mth, col = 4, lwd = 2, lty = 1)

> legend(20, 0.00085, c("TICK TIME:", "Rectangular", "Bartlett", "MTH"), lwd = c( 0, 1, 2, 2),

+ col = c(0, 2, 3, 4), lty = c(0, 2, 1, 1))

There can be a big di�erence between realized variance estimates when the sampling frequency di�ers

by a small amount. For an example of this we turn back to the CTS one day signature plot for MSFT May

1, 1997. In the top panel of Figure 19 we pick two estimates of realized variance that are 14 seconds apart.

An accumulation plot appears in the bottom panel of this �gure along with how the timings line up in the

center panel.

> # Figure 19

> par(mfrow = c(3, 1))

> plot(x = real.naive$x[ - c(1:30)], y = real.naive$y[ - c(1:30)], xlab = "Sampling Frequency",

+ ylab = "Realized Variance", main = "MSFT 5/1/1997", cex = 0.5)

> tmp <- real.naive$y[880:920]

> ind.max <- which(tmp == max(tmp)) + 880

> ind.min <- which(tmp == min(tmp)) + 880

> points(real.naive$x[c(ind.max, ind.min)], real.naive$y[c(ind.max, ind.min)],

+ col = c(2, 3), cex = 1.5)

> plot(rCumSum(msftt.real.19970105, 1), pch = ".", xlab = "Seconds", ylab = "Cummulative Return")

> lines(rCumSum(msftt.real.19970105, ind.max), col = 2)

> lines(rCumSum(msftt.real.19970105, ind.min), col = 3)

> plot(rAccumulation(msftt.real.19970105, ind.max), col = 2, type = "l",

+ ylab = "RV Accumulation", xlab = "Seconds")

> lines(rAccumulation(msftt.real.19970105, ind.min), col = 3)
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Figure 19 and 20

Figure 20 displays multiple covariance estimates for MSFT and GE May 1, 1997. These are the kernel

type estimates using Rectangular, Bartlett, and Modi�ed Tukey-Hanning kernels at the highest sampling

frequency.

> # Figure 20

> get.real.19970105 <- realizedObject(get.cleanPrice.ts[timeEvent("5/1/1997"), ],

+ cts = T, makeReturns = T)

> real.naive <- rSignature(1:1800, x = msftt.real.19970105, y = get.real.19970105,

+ type = "naive", xscale = 1/60)

> par(mfrow = c(1, 1))

> plot(real.naive, xlab = "Sampling Frequency (Minutes)", ylab = "Realized Covariance",

+ main = "MSFT | GE 5/1/1997", cex = 0.5)

> rect <- rSignature(1:300, x = msftt.real.19970105, y = get.real.19970105, type = "kernel", xscale = 1/10,

+ args = list(align.period = 1, type = "rectangular"))

> lines(real.rect, col = 2, lwd = 1, lty = 2)

> axis(3, c(0, (1:6) * 5), c("Lags:", as.character((1:6) * 50)))

> # Bartlett kernel

> real.bart <- rSignature(1:300, x = msftt.real.19970105, y = get.real.19970105, type = "kernel",

+ xscale = 1/10, args = list(align.period = 1, type = "bartlett"))

> lines(real.bart, col = 3, lwd = 2, lty = 1)

> # Modified Tukey Hanning kernel

> real.mth <- rSignature(1:300, x = msftt.real.19970105, y = get.real.19970105, type = "kernel",

+ xscale = 1/10,args = list(align.period = 1, type = "mth"))

> lines(real.mth, col = 4, lwd = 2, lty = 1)

> legend(20, 0.0002, c("Rectangular", "Bartlett", "MTH"), lwd = c(1, 2, 2), col = c(2, 3, 4), lty = c(2, 1, 1))

Again, we study the di�erence between two realized covariance estimates. Figure 21 shows two di�er-

ent estimates that are 75 seconds apart, along with the alignment of each asset and a realized covariance

accumulation plot.

> #Figure 21

> par(mfrow = c(4, 1))
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Figure 21 and 22

> plot(real.naive, xlab = "Sampling Frequency", ylab = "Realized Covariance", main = "MSFT | GE 5/1/1997"

+ , pch = ".")

> tmp <- real.naive$y[500:600]

> ind.max <- which(tmp == max(tmp)) + 500

> ind.min <- which(tmp == min(tmp)) + 500

> points(real.naive$x[c(ind.max, ind.min)], real.naive$y[c(ind.max, ind.min)], col = c(2, 3), cex = 0.8)

> plot(rCumSum(msftt.real.19970105, 1), pch = ".", xlab = "Seconds", ylab = "Cummulative Return",

+main = "MSFT", col = 16)

> lines(rCumSum(msftt.real.19970105, ind.max), col = 2)

> lines(rCumSum(msftt.real.19970105, ind.min), col = 3)

> plot(rCumSum(get.real.19970105, 1), pch = ".", xlab = "Seconds", ylab = "Cummulative Return",

+ main = "GE", col = 16)

> lines(rCumSum(get.real.19970105, ind.max), col = 2)

> lines(rCumSum(get.real.19970105, ind.min), col = 3)

> plot(rAccumulation(msftt.real.19970105, y = get.real.19970105, ind.max), col = 2, type = "l",

+ ylab = "RV Accumulation", xlab = "Seconds")

> lines(rAccumulation(msftt.real.19970105, y = get.real.19970105, ind.min), col = 3)

Nonsynchronous trading is a large problem in the calculation of realized covariance. To see how co-returns

occur for di�erent timings the rScatterReturns function is used as in Figure 22.

> # Figure 22

> par(mfrow = c(1, 2))

> rScatterReturns(msftt.real.19970105, y = get.real.19970105, period = 1, xlab = "MSFT", ylab = "GE",

+ main = "One Second Frequency")

> rScatterReturns(msftt.real.19970105, y = get.real.19970105, period = 300, xlab = "MSFT", ylab = "GE",

+ numbers = T, main = "5 Minute Frequency")

Further analysis to see the co-zero returns is the rc.zero function which is similar to any rc.* function. It

can also be put in the rSignature function as in Figure 23.

> # Figure 23

> par(mfrow = c(1, 1))

> plot(rSignature(1:1800, msftt.real.19970105, y = get.real.19970105, type = "zero"))
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In order to calculate a realized covariance or correlation matrix you should pass the rRealizedVariance
function a 'seriesMerged' timeSeries or you can use the merge function objects of type �realizedObject�

> both.real.19970105 <- merge(msftt.real.19970105, get.real.19970105)

> rRealizedVariance(x = both.real.19970105, cts = T, args = list(align.period = 5 ))

[,1] [,2]

[1,] 0.0022036758 -0.0000162177

[2,] -0.0000162177 0.0008898262

> rRealizedVariance(x = seriesMerge(msftt.cleanPrice.ts[timeEvent("5/1/1997"), ], get.cleanPrice.ts[timeEvent("5/1/1997"),

], pos = "union"), cts = T, args = list(align.period = 5), makeReturns=T)

[,1] [,2]

[1,] 0.0022036758 -0.0000162177

[2,] -0.0000162177 0.0008898262

The last example in this supplement is an example of calculating realized variance, covariance and
correlation over all days in the sample. The results appear in Figure 22.
> days <- c("5/1/1997", "5/2/1997", "5/5/1997", "5/6/1997", "5/7/1997", "5/8/1997", "5/9/1997", "5/12/1997",

+ "5/13/1997", "5/14/1997", "5/15/1997")

> dates <- timeEvent(days)

> covs <- array(dim = c(length(dates), 2, 2))

> cors <- array(dim = c(length(dates), 2, 2))

> for(i in 1:length(dates)) {

+ msft.real <- realizedObject(msftt.cleanPrice.ts[dates[[i]], ], cts = T, makeReturns = T)

+ ge.real <- realizedObject(get.cleanPrice.ts[dates[[i]], ], cts = T, makeReturns = T)

+ both.real <- merge(msft.real, ge.real)

+ covs[i, , ] <- rRealizedVariance(x = both.real, cts = T, type = "avg", lags = 600, args = list(align.period =

1), cor = F)

+ cors[i, , ] <- cov2cor(covs[i, , ])

+ }

> # Figure 22

>par(mfrow = c(2, 2))

> plot(timeSeries(covs[1:length(dates), 1, 1], positions = days), main = "MFST Var")

> plot(timeSeries(covs[1:length(dates), 1, 2], positions = days), main = "Cov")

> plot(timeSeries(cors[1:length(dates), 1, 2], positions = days), main = "Cor")

> plot(timeSeries(covs[1:length(dates), 2, 2], positions = days), main = "GE Var" )
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Figure 21 and 22
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